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Inspired by the structure of technological weblike systems, we discuss network evolution mechanisms which
give rise to topological properties found in real spatial networks. Thus, we suggest that the peculiar structure
of transport and distribution networks is fundamentally determined by two factors. These are the dependence
of the spatial interaction range of vertices on the vertex attractiveness �or importance within the network� and
on the inhomogeneous distribution of vertices in space. We propose and analyze numerically a simple model
based on these generating mechanisms which seems, for instance, to be able to reproduce known structural
features of the Internet.
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I. INTRODUCTION

Technological networks, such as transportation or com-
munication networks, are man-made networks designed for
transport of resources between sites distributed over a certain
geographical area �1�. Depending on the type of network, the
resources can be information, wares, electricity, or persons,
and the geographical area range from a small region to the
whole world. Examples of technological networks are,
among others, the Internet �2,3�, the airline �4–6� and rail-
way �7,8� networks, and the electric power grid �4,9�. The
Internet consists of a set of routers linked by optical fiber or
other type of physical connection, and it turned into an in-
dispensable tool to get information from and about whatever
part of the world. The airline network, which principal func-
tion is to transport persons and wares, has all the airports of
the world as vertices of the network, and the corresponding
nonstop scheduled flights connecting the airports as its
edges. Electric power grids, on the other hand, are sets of
generators, transformers, or substations connected by high-
voltage transmission lines.

The most prominent feature of these technological net-
works is that they are embedded in a real physical space,
with vertices having well-defined positions. This is not the
case for other types of networks, such as citation or bio-
chemical networks, in which the positions of vertices have
no physical meaning �see Refs. �1,10–12� for general re-
views�. In many communication and transportation net-
works, the cost of establishing long-range connections be-
tween distant spots is usually higher than the cost of
establishing short-range connections. This is clear for net-
works such as the Internet or the railway network, where
establishing a long-range connection is obviously expensive
because long channels need a larger infrastructure. For elec-
tric power grids, the connection cost between farther spots is
even higher, given that in long high-voltage lines a large
amount of energy is lost during the transmission.

This dependence of the connection cost on the distance is
one of the most prominent mechanisms governing the evo-
lution of technological networks, and it is determinant for
understanding their structure. As a consequence of that, for
example, not all connections between vertices are equally

probable; neighboring vertices tend to connect to each other
with higher probability than distant ones. This, in turn, is the
origin of some of their more characteristic properties.

The most important quantities designed for capturing net-
work’s structure are the degree distribution, the average dis-
tance between the vertices, and the mean and local clustering
coefficients. The degree distribution P�k� gives the probabil-
ity that a randomly selected vertex of the network has degree
k, i.e., that it is connected to k other different vertices. Most
technological networks exhibit degree distributions that for
sufficiently large k decay as a power law P�k��k−�, i.e.,
they exhibit a scale-free character. However, power grids or
railway networks, in which long-range connections practi-
cally do not exist, typically show exponential degree distri-
butions �8,9�. The average path length l is defined as the
mean distance between each two vertices in the network,
where the distance between any two vertices is defined as the
number of edges along the shortest path connecting them.
Finally, the clustering coefficients measure the local ten-
dency of vertices to form highly connected clusters. The
clustering coefficient of a vertex is defined as the ratio be-
tween the number of connections existing among its nearest
topological neighbors—the vertices which are connected
through an edge with it—and the maximal number of edges
which can exist among them. The mean and the local clus-
tering coefficients C and C�k� are the averages of the clus-
tering coefficients over all vertices of the network, and over
all vertices of degree k, respectively.

Large mean clustering coefficients and average path
lengths of technological networks can be understood taking
into account their growth mechanisms. Thus, the fact that
vertices tend to link to their “physical” neighbors yields a
large probability that, given a vertex in the network, its “to-
pological” neighbors are also connected between themselves.
This typically gives rise to large values of mean clustering
coefficient. On the other hand, since distant vertices tend to
be poorly connected between themselves, shortest paths con-
necting farther nodes are usually long, and pass through
many vertices in between. Statistical measures of the lengths
of connections confirm that the large part of edges in most
transportation and distribution networks are short-range con-
nections �6�.
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The dependence of the connection cost on the distance is
an important parameter in the modeling of transportation net-
works, but it is not the only mechanism responsible for their
structure. In general, the structure of technological networks
is both a function of what is geographically feasible and
what is technologically desirable. For reasons of efficiency,
some long-range connections are typically always present in
spite of their high cost: in many cases, connecting two dis-
tant vertices through a long necklace of neighboring vertices
slows down the global transport in the network and makes it
inefficient. Long-range connections are observed both in the
Internet and the airline networks �6�. Additionally, when
long-range connections exist, they usually link the highly
connected vertices of the network �2,6�. That is not surpris-
ing. If a telecommunication company or an airline decides to
make a big investment in creating a long-range transport
channel, it typically wants to link sites which are somehow
important and well connected �depending on the type of net-
work, they can be technological, touristic, or commercial
spots�, so that the amount of information or wares which will
be exchanged between them compensates the expense.

As an aside, cost functions and logistic transport structure
are not exclusive of technological networks. A very interest-
ing example of transport in networks not embedded in a
physical space corresponds to food webs �13,14�. In these
webs, species are described by means of vertices that are
connected by links representing the predations. They depict
the transfer of material and energy from one species to an-
other within an ecosystem. The directionality of the links
�pointing from prey to predator� defines a flow of resources
�energy, nutrients, and prey� between the vertices of the web.
The analysis of these networks is similar to the technological
ones. Thus, it has been recently show that a very successful
way to study the food webs is by introducing a cost function
which measures the cost of the resource transfer �15,16� �al-
though, of course, in this case the cost does not depend on
any physical distance�.

Networks embedded in a metric space with distance-
dependent connection probabilities are called spatial or geo-
graphical networks �12�. In the past few years several models
have been proposed in order to study their structural proper-
ties �2,17–41�. Most of them combine the preferential attach-
ment mechanism �42�, which is widely accepted as the prob-
able explanation for power law degree distributions seen in
many networks, and distance effects. The last typically lead
to a deviation from the scale-free behavior when the distance
constraints are sufficiently strong. Almost all these studies
have focused on the effects of geography on the degree dis-
tribution, ignoring other important characteristics. These are,
however, of primary interest. Thus, in a exhaustive study of
the Internet �3� Vazquez and collaborators found not only
that it is a scale-free network, but also that the local cluster-
ing coefficient C�k� and the nearest-neighbor average func-

tion k̄nn fall as power-law functions with exponents −0.75
and −0.5, respectively. On the other hand, Gastner and New-
man �6� showed that strong geographical constraints tend to
produce networks with an effective network dimension d
close to d�2. �Both the nearest-neighbor average function
and the effective network dimension will be defined latter in

the text.� These new quantities are essential when measuring
such important features as degree-degree correlations and the
hierarchy �3� and planar �6� characters of networks.

In this paper we suggest several network evolution
mechanisms which are able to develop spatial networks that
exhibit most of the features found in real technological sys-

tems, i.e., reproducing correct values for C�k�, k̄nn, and d.
The paper is organized as follows. In Sec. II we list the basic
mechanisms which govern the evolution of spatial networks.
In Sec. III we construct a very simple model inspired by
these mechanisms, which, in spite of its simplicity, seems to
successfully reproduce most of the wanted properties. Sec-
tion IV is devoted to the study of topological properties of
the model. In Sec. V we briefly discuss the suitability of the
model to real networks. Finally, in Sec. V our conclusions
are drawn.

II. NETWORK EVOLUTION MECHANISMS

The basic principles underlying our network generation
algorithms are the following.

�i� The knowledge of any given vertex about the network
is limited to a certain �Euclidean� neighborhood of the vertex
�a property of locality�. Each vertex is “aware” of the char-
acteristics of all vertices belonging to its neighborhood, but
not of the characteristics of the rest of the vertices of the
network.

�ii� The range of this physical neighborhood is governed
by a cost function which establishes the importance of the
geographical constraints. As the connection cost grows, the
range of the neighborhood decreases.

�iii� As usual, the network grows by adding vertices and
edges. At each time step, new vertices are added and con-
nected to the system; additionally, new edges may be set
between vertices already existing in the network.

�iv� Preferential attachment condition. Vertices try to con-
nect to vertices of large degree—the more attractive ones—
lying within their neighborhood.

Apart from these requirements �already considered, e.g.,
in Ref. �23��, we add two new ingredients.

�v� The interaction cost governing the range of each
neighborhood depends on the attractiveness of the vertex as-
sociated; the larger is the vertex attractiveness the larger its
interaction range.

�vi� The probability that a new vertex appears in an iso-
lated area, geographically far from the rest of the vertices, is
smaller than the probability that the new vertex appears close
to an already existing vertex. �Regarding to this last point, a
similar idea has recently been proposed by Kaiser and
Hilgetag �29�.� In addition, vertices cannot appear too close
to each other.

The last two conditions are inspired by the properties of
technological networks. Condition �v� is a consequence of
the fact that the degree of important vertices in the network
not only grow faster the “richer” they already are �preferen-
tial attachment�, but they also extend their “tentacles” more
far away. Condition �vi� mirrors the fact that vertices do not
appear over a geographical area at random. Consider, for
instance, the Internet and the electric power grid. When a
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power plant is constructed in a region too far from civiliza-
tion, the plant supplies electricity to the buildings close to it,
but no high-voltage transmission lines link the station to the
grid of the civilized world if the distance is large; the plant
usually remains isolated. �In fact, electric power plants are
not constructed far from civilization. The inhabitants of iso-
lated regions usually use small generators for personal use.
The station is constructed only when civilization comes to
the region.� In the Internet, routers concentrate in towns,
rather than in deserted areas. That is quite natural, people
live and work in towns. Consequently, new Internet accesses
tend to appear in towns, in the vicinity of other already ex-
isting accesses. Furthermore, the more industrialized is the
town, the more rapidly the number of Internet accesses
grows. On the other hand, we must also take into account,
that vertices do not appear extremely close to each other.
Thus, constructing two big power stations in close vicinity to
one another �for example, one kilometer apart� is not reason-
able; it is cheaper to build one bigger station which supplies
electricity to the entire area. It also is not common for a
family house to have two routers, since one router can supply
Internet to all computers in the house. Therefore, we assume
that there are certain areas, not too far but also not too close
to the existing vertices, where new vertices will more prob-
ably arise than in others.

III. A SIMPLE MODEL

These basic ideas can be implemented in very different
ways giving rise to different growth models. Consider, for
instance, the preferential attachment prescription. One has to
decide whether the attachment probability depends linearly
on the degree, as in the Barabási-Albert construction �42�, or
whether it must follow another law. One also has to decide
about the interaction’s dependence on distance and on vertex
attractiveness. Moreover, the probability of the appearance of
a new vertex at position r can be a complex function involv-
ing the positions of all already existing vertices in the net-
work, or depending only on the position of the vertices closer
to the point.

The appropriate implementation of a determined pattern
depends obviously on the particular geographical system that
we attempt to model. Numerical simulations show that dif-
ferent �but similarly oriented� prescriptions produce models
showing qualitatively the same behavior. This fact supports
the general value of the mechanisms proposed. Since we are
not yet intending to study any particular real-world network,
but are interested only in capturing some general features of
spatial systems, we will adopt here the simplest realization of
the guiding prescriptions.

We start from a preselected area in a two-dimensional
Euclidean plane. In this area, we place at random mo verti-
ces, so that the distance between any two of these initial
vertices is larger than a given rmin, the minimum distance
that will separate vertices in the network. Since the mo ver-
tices are placed at random, the order of magnitude of sepa-
ration between them depends on the size of the preselected
area. Now we let our network grow around these initial ver-
tices. At each time step a new vertex with m1 proper links is

added to the network and connected to m1 vertices already
present. Additionally, once the new vertex is attached, m2
new edges are distributed among all the vertices of the net-
work. In both cases, vertices and edges are added to the
network only if the geographical constraints allow for the
addition.

Our geographic constraints are defined by the two charac-
teristic distances rmin and rmax, which define a ring area
around a point. At each step we choose at random a vertex of
the preexisting network. From this point, using polar coordi-
nates, we put a new vertex at a position given by a radius r
and an angle � picked up at random from homogeneous
distributions rmin�r�rmax and �� �0,2��. If this new ver-
tex happens to be at a distance smaller than rmin from some
preexisting one, the selection is rejected and a different old
vertex is chosen. Note that this prescription does not give an
homogeneous distribution in space when rmax→� and rmin
→0, but essentially means that smaller distances to the cho-
sen vertex are preferred.

In order to connect the new vertex to the system, we
consider the nodes of the network within the circle of radius
rmax from the newly introduced one n. This circular area
around the new node is considered to be its physical neigh-
borhood. If the number of vertices in the neighborhood is
smaller than m1, the newly introduced vertex is connected to
all of them; if their number exceeds m1 than it is connected
to exactly the m1 ones with higher degree. Note that the fact
that the range of the neighborhood is precisely rmax ensures
that a new node is connected to at least one old one.

The second process, consisting of the addition of new
edges between vertices, works in a similar way. We ran-
domly choose a vertex v of the network, and then, from the
vertices that belong to its physical neighborhood but are not
yet connected to it, we choose the m2 vertices having larger
degree and connect v to them. Here, however, the interaction
range rv of the neighborhood of v is governed by the func-
tion

rv = rmax + �kv
�, �1�

where kv is the degree of vertex v, and � and � are non-
negative tuning parameters whose function is basically to
define the area which a vertex “sees” depending on its im-
portance �degree� within the network. In case that the num-
ber of vertices that belong to the neighborhood of v, and that
are not yet connected to it, is q	m2, then only q edges are
added to the network. Note that the effects of geography
disappear when rmax→�.

Let us comment on some aspects of the model. First, ver-
tices are not distributed at random over the area of study, but
their distribution depends on the “history” of the network.
New vertices appear in the vicinity of the vertices already
present in the network. Second, the interaction range of a
vertex is a function of its attractiveness, or importance in the
network. If a vertex increases its importance in the network,
then its interaction range grows. �Here, we do not take into
account the fact that old vertices can remain obsolete with
time.� Third, we impose the following preferential attach-
ment condition: connect to the more attractive vertex of the
network that you can “see.”
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IV. PROPERTIES OF THE MODEL

Extensive numerical simulations confirm that this simple
model is able to reproduce many of the properties of spatial
networks. In the present study we restrict ourselves to two
sets of values for the parameters of the model. The first one,
which includes three different spatial cases, illustrates the
impact of the cost-distance dichotomy on network structure.
We consider the following values: m1=1, m2=1, rmin
=500 m.u., and rmax=1000 m.u. �where m.u. stands for an
arbitrary “metric unit”�. The fact that we impose rmax
=2rmin, i.e., that rmax is only twice rmin, indicates that in this
case we deal with networks for which the cost of new verti-
ces establishing long-range connections is very high. Addi-
tionally, we choose m0=7, and a radius of 14 000 m.u. for
our initially preselected discarea, within which the m0=7 ini-
tial vertices may be placed at random. The three cases we
distinguish are as follows. Case �a�, �=1 and �=1.4, corre-
sponding to a spatial network in which the geographical con-
straints are extremely important �in this case long-range con-
nections are practically inexistent�. Case �b�, �=1.5 and �
=2.3, an intermediate case. Case �c�, �=2 and �=4, for
which vertices of high degree are allowed to establish long-
range connections. The selected values of parameters are cer-
tainly arbitrary and are adopted in order to illustrate the ef-
fects of the distance-cost dependence. In effect, for �=0, the
resulting network is practically a tree, since no edges can be
placed between old vertices, while for very large � and � a
“winner-takes-all” phenomenon emerges, in which almost all
vertices are connected to one super-hub with an enormous
degree.

Figure 1 compares the results of simulations correspond-
ing to these three cases. To be able to draw the resulting
networks, we consider small graphs with only 1000 vertices
�numerical simulations indicate that the structure does not
significantly change as the order of the networks grows�.
Panels �a1�, �b1�, and �c1� show the effects of the selective
growth of the interaction range with the degree of vertices:
For systems where long-range connections are highly expen-
sive �model �a��, even the most important vertices of the
network are connected only to a few close neighbors. As the
cost of establishing long-range interactions decreases, con-
nections between distant vertices in the network begin to
appear, in particular, between high degree vertices �models
�b� and �c��.

The degree distribution evidently changes as the geo-
graphical constraints are gradually loosened. Thus, model �a�
shows a degree distribution which decays approximately ex-
ponentially �panel �a2��; no vertices of high degree can be
found. The degree distributions of models �b� and �c�, how-
ever, exhibit well-defined power law tails �in spite of the
small order of the networks considered�: P�k��k−2.25 �panel
�b2�� and P�k��k−2.95 �panel �c2��. Here, the exponents are
obtained by using linear regression on the log-log data. With
intent to linearly fit the data, we need to apply some cutoffs
to the data entering the fit. On the one hand, we discard all
points corresponding to too low values of k because they
obviously do not belong to the power law tail of the distri-
butions �remember that the scale-free character is related to

the power law behavior of P�k� for k sufficiently large�. On
the other hand, we eliminate points corresponding to too
large values of k, because these points are prone to finite size
effects of the small networks considered and they are not
relevant statistically. Thus, because the application of the
cutoffs is somehow arbitrary, we certainly expect some small
bias in the estimation of the exponents. However, the agree-
ment between the data and the corresponding fits indicates
without doubt that the error has to be small, which validates
our results. The same comments can be applied for the rest of
fits presented in this work.

The corresponding local clustering coefficients also show
a behavior very close to that found in real networks �see
panels �a3�, �b3�, and �c3��. All three models exhibit power
law behaviors for C�k�: C�k��k−0.40 �panel �a3��, C�k�
�k−0.46 �panel �b3��, and C�k��k−0.58 �panel �c3��. In addi-
tion, the mean clustering coefficient C of these spatial mod-
els is always quite large, about C�0.33 for all three of them.
The number of triangles �cycles of length three� in the net-
work is, however, 668 �model �a��, 1593 �model �b��, and
1341 �model �c��. On the other hand, the average path length
decreases as the amount of long-range connections grows
from l=20.18 �model �a�� to l=8.83 �model �b�� and l
=5.01 �model �c��. This result is quite natural, and shows the
transition from a quasi-planar graph with a structure quite
similar to a lattice �model �a�� to a typical complex network
structure found in most geographical networks �models �b�
and �c��.

Making use of the effective dimension d, Gastner and
Newman showed that, networks where geographical effects
are extreme are essentially planar graphs �i.e., they can be
drawn on a map without any edges crossing�. The effective
dimension can be defined as d=limL→� log N̄�L� / log L,

where N̄�L� is the average number of vertices which can be
found within a distance of L steps or less from a vertex. In
finite networks no limit L→� can be taken, but good results
for d can be achieved by plotting log N̄�L� against log L for
the central vertices of the network and measuring the slope
of the resulting line �of course, far away of the saturation
region corresponding to exhausting of the network�. Central
vertices are those vertices of the network that have minimum
eccentricity, being defined as the maximum distance from the
vertex to any other vertex in the network. �Note that central
vertices are sometimes defined as the vertices having larger
“betweenness centrality,” as in Ref. �5�. We use, however,
the classical definition from the graph theory.�

Figure 2 shows on double logarithmic scales how N̄�L�
behaves as a function of L. From bottom to top the curves

correspond to model �a�, the critical behavior N̄�L��L2,
model �b�, and model �c�. We see that the effective dimen-
sion of model a is certainly smaller than two, which is not a
surprise provided that model a creates practically a planar
graph. The dimensions of models b and c—which are obvi-
ously not planar graphs—are larger than 2. The difference

between the three models at N̄�L=1� is due to the fact that
central vertices are usually the more connected ones of the
network.

Tomographic studies reveal interesting details too. To-
mography deals with the study of the structure of layers

R. XULVI-BRUNET AND I. M. SOKOLOV PHYSICAL REVIEW E 75, 046117 �2007�

046117-4



which surround a given vertex �the root� in the network
�43–45�. The principal motivation for examining the tomog-
raphy of a network results from its importance for under-
standing the spreading phenomena taking place in networks.
We concentrate here on the layer average degree �k�L
=	kkPL�k�, where PL, the degree distribution in shell L, is

defined as PL�k�= �	rNL,r�k�� / �	k,rNL,r�k��, with NL,r�k� be-
ing the number of vertices of degree k in layer L for root r.
The study of �k�L for the three networks considered shows a
peak whose height decreases as the cost of establishing long-
range connections grows �Fig. 3�. The results indicate that
the mean degree �k�L=1 increases rapidly as the number of
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FIG. 1. �Color online� �a1�, �b1�, and �c1�: graphical representations of the models �a�, �b�, and �c�, respectively. The three networks have
1000 vertices; their number of edges is L=1881 �a1�, L=1982 �a2�, and L=1982 �a3�. Note that all edges of network �a1� are short-range
connections, while in network �c1� edges connecting distant vertices do exist. �a2�, �b2�, and �c2�: Degree distribution of the networks
represented in �a1�, �b1�, and �c1�, respectively. Models �b� and �c� are scale-free. The slope of the straight lines are −2.24 �b2� and −2.95 �c2�.
�a3�, �b3�, and �c3�: Local clustering coefficient C�k� of the networks represented in �a1�, �b1�, and �c1�, respectively. The behavior of C�k�
follows power laws for the three models. The slope of the straight lines are −0.40 �a3�, −0.46 �b3�, and −0.58 �b3�. Notice the double
logarithmic scales in all graphs.
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long-range connections and hubs in the network grows. On
the other hand, the average shell degree decreases rapidly for
more distant layers, L
1. This interesting result shows that
vertices with large degrees are rapidly exhausted in this type
of networks, which has especial importance when dealing
with spreading phenomena, like spreading of information or
infections. Note that this result has important effects on epi-
demiological properties: vertices of large degree are rapidly
affected by the spreading of an infection. On the other hand,
in a network such as that of model �a� the propagation of any
spreading agent will be similar to the propagation on a lat-
tice: the spreading agent will primarily reach the nearest
physical neighbors.

In Fig. 4 we show the correlation properties of these three
models. Degree-degree correlations are determined by the

probability function Eij, which gives the probability that a
randomly selected edge connects one vertex of degree i to
another of degree j. Thus, a network is said to be degree-
degree uncorrelated if Eij = �2−�ij�iP�i�jP�j� / �i�2, which
only means that the probability that an edge connects to a
vertex of a certain degree k is independent from whatever
vertex is attached to the other end if the edge. Otherwise, the
network is said to be degree-degree correlated. Most real
networks are correlated, and usually exhibit either “assorta-
tive” or “dissortative” mixing �46�. Assortativity means that
high-degree vertices attach preferably to other highly con-
nected vertices, i.e., with a larger probability than in uncor-
related networks; on the other hand, dissortativity stands for
when high-degree vertices tend to connect to low-degree ver-
tices, and vice versa. Thus, a very useful quantity for mea-
suring the correlation’s degree of a network is the nearest-

neighbor average function k̄nn�j�, which expressed in terms

of Eij, can be written as k̄nn�j�= �	ii�1+�ij�Eij� / �	i�1
+�ij�Eij�. It takes the constant value k̄nn�j�= �j2� / �j� if no
type of degree-degree correlation exist, while it is a decreas-
ing �increasing� function if dissortative �assortative� mixing

is present. In the picture we plot k̄nn�j� as a function of j. The
lowest curve, corresponding to model �a�, shows then that
the network is slightly assortative. This feature of model �a�
is due to the fact that the areas containing a large density of
vertices usually contain a large density of edges �see Fig. 1
�a1��, corresponding probably to important areas of the
space; and vice versa, the areas containing a small density of
vertices also contain a small density of edges. On the other
hand, models �b� and �c�, in which the geographical con-
straints are not so strong, present dissortative mixing. Inter-

estingly, for both models k̄nn�j� falls with j following power

laws of the form k̄nn�j�� j−�, just as happens in real net-
works.
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FIG. 2. �Color online� N̄�L� as a function of the L. From bot-
tom to top, models a, b, and c. The straight line correspond to a
network of dimension 2. The results are used to estimate the dimen-
sion of the three spatial networks considered �see text for more
details�. Notice the double logarithmic scales of the picture.
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FIG. 3. �Color online� Layer average degree �k�L as a function
of shell number L. The curve with the highest peak corresponds to
model c, the intermediate one and the flat one to models b and a,
respectively.
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FIG. 4. �Color online� Analysis of the degree-degree correla-
tions of the three models considered. Nearest neighbors’ average

function k̄nn�j� against j. From bottom to top, models a, b, and c.
The corresponding straight lines are drawn as a guide of eyes. Note
that models b and c exhibit dissortative mixing, while model a is
slightly assortative.
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Model �a� reproduces quite well the properties of those
systems where vertices and edges are embedded in the two-
dimensional physical space, such as, for example, electric
power grids or road networks. However, none of the three
models considered above is suitable for characterising world-
scale systems such as the Internet or the network of airline
routes. The reason is that, in such large-scale systems, verti-
ces are usually not uniformly distributed in the region under
study �as occurs in our preceding models, see Figs. 1�a1�, 1
�b1�, and 1�c1��, but they concentrate in a number of techno-
logical areas distributed over the world. Thus, a more realis-
tic model for describing such systems must take into account
that in large-scale geographical networks there usually exist
many “desert” regions lying between the areas where verti-
ces can be found in abundance. Such a pattern is easy to
construct by varying the ratio between rmax and rmin in our
model. This aspect is actually considered by our second se-
lection of parameters. As we will see next, inhomogeneous
distribution of vertices in space influences quantitatively the
statistical properties of networks.

Let us thus consider a larger ratio for rmax/rmin, for ex-
ample, rmax=5rmin. �Note that the change in the ratio

rmax/rmin modifies not only the distribution of vertices in
space, but also makes cheaper the cost of establishing con-
nections for new vertices, since the neighborhood of a new
vertex will, in comparison, contain more vertices.� The val-
ues of the parameters for this model �model d� are now the
following: m0=7, m1=1, m2=1, rmin=200 m.u., rmax
=1000 m.u., �=2 and �=3. As before, the initial area, where
the m0=7 vertices are randomly placed, has a radius of
14000 m.u. and the order of the network is N=1000. Figure
5�a� shows this network in the two-dimensional Euclidean
space: The model simulates perfectly the tendency of verti-
ces to concentrate in different areas having a high density of
vertices �as if these areas were urban centers, i.e., cities or
city agglomerations�, which are linked through long-range
connections which join vertices of large degree, usually be-
longing to different geographical communities.

The last construction is especially interesting, since it re-
produces many structural features found in real networks.
Thus, the degree distribution of the model follows a power
law, in this case P�k��k−2.42 �panel �b� of Fig. 5�. The mean
clustering coefficient is large. For our small network C
�0.7. The degree-dependent clustering coefficient C�k� de-
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FIG. 5. �Color online� �a�
Graphical representation of a
small network �N=1000 and L
=1985� corresponding to model
�d�. Note that vertices concentrate
in certain areas of the space, and
that the long-range connections of
the network link vertices of large
degree. �b� Degree distribution of
model �d�. The slope of the
straight line is −2.42. �c� Degree-
dependent clustering coefficient
C�k� of the model. The slope of
the straight line is −0.97. �d�
Nearest-neighbor average function

k̄nn as function of degree j. The
slope of the straight line is −0.52.

Note that P�k�, C�k�, and k̄nn fall
off as power law functions. �e�
Average degree �k�L as a function
of shell number L. From �k�L=1

the average degree interestingly
decays following a power law �in-
set of the picture�. The straight
line plotted in the inset is drawn
as a guide for eyes.
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cays as a power law function too, C�k��k−0.97 �panel �c� of
the figure�. The average path length is very small �l=3.74 for
the given parameters�, and numerical simulations with larger
networks indicate a small-world behavior. In addition, the
network shows dissortative mixing: the nearest-neighbor av-

erage function k̄nn decreases as k̄nn�j�� j−0.52 �see Fig. 5�d��.
Finally, in Fig. 5�e� we plot the average degree �k�L as a
function of shell number L, corresponding to the study of
tomography. We see again that hubs are found only a few
steps away from any vertex, and interestingly, that �k�L drops
as a perfect power law from L=1 on �see inset of the figure;
note the double logarithmic scales�.

V. REAL NETWORKS: DISCUSSION AND PERSPECTIVES

Most of the above-mentioned properties are surprising
close to the ones found in the Internet: Let us remind that
according to the study of Vazquez and collaborators i� the
degree distribution of the Internet follows a power law with
exponent �=−2.2, ii� the local clustering function C�k� be-

haves as C�k��k−0.75, and iii� k̄nn decreases with j following

the function k̄nn�j�� j−0.5 �3�. Moreover, if we consider more
“appropriate” parameter values in our model, we can even
obtain closer results: Taking N=5000 �which approximately
corresponds to the number of vertices of the Internet’s map-
ping studied in �3��, m0=7, m1=1, m2=1, rmin=370 m.u.,
rmax=1000 m.u., an initial area of radius 100000 m.u., �
=600, and �=1.9, we obtain for the resulting growing net-
work a degree distribution P�k��k−2.24, a local clustering
coefficient C�k��k−0.73, and a nearest-neighbor average

function k̄nn�j�� j−0.33. However, one has to be cautious
about comparing absolute numerical values. We must bear in
mind, among others, that the inhomogeneities in the distri-
bution of vertices in our example are definitely different
from the real distribution of routers over the world, and that
our growth model, which is kept very simple and is certainly
an oversimplication, not even intent to mimic the accelerated
growth of the Internet. Thus, we interpret the agreement be-
tween the properties of our model and the ones of the Inter-
net as an indication that the model appropriately implements
the basic growth mechanisms. Of course, for modeling any
particular real-world network, a specific model must be con-
structed. With this respect our results have therefore to be
considered as preliminary.

Finally, we also indicate a minor change in the model that
can provide more flexibility when constructing growing net-
works with desired properties. The only change is the follow-
ing: instead of using Eq. �1� in the description of the inter-
action range use the equation rv=ro+�kv

�, with rormax.
The fact that the interaction range of any new vertex can be
now ro
rmax implies that it can see from the very beginning
more vertices to connect with. This change does not qualita-
tively alter the properties of the model but tends to modify
the exponents of the resulting power laws, principally the

ones of the nearest-neighbor average function k̄nn�j� and the
degree distribution P�k�. Thus, the above values m0=7,
m1=1, m2=1, rmin=370 m.u., rmax=1000, a radius of
100000 m.u. for the initial area, �=600, and �=1.9, together
with ro=2300 m.u., let us grow a spatial network with

C�k��k−0.75, k̄nn�j�� j−0.47, and P�k� following approxi-
mately the double power law P�k��k−1.9 �for 3�k�10� and
P�k��k−3.1 �for k
10�. The change gives rise therefore to
stronger dissortative mixing and faster decaying of the de-
gree distribution.

VI. CONCLUSIONS

In summary, we introduce several network-generating
mechanisms taking into account the constraints that geogra-
phy impose on the evolution of large-scale network systems
in physical space. We suggest that two properties are deter-
minant for the structure of such geographical networks: the
fact that the spatial interaction range of vertices depends on
the vertex attractiveness and the fact that vertices are not
randomly distributed in space. Simple implementations of
these mechanisms show that the essential difference between
“strong geographical” networks, such as electric power grids,
and “weak geographical” networks, such as the Internet or
the airline network, could be the cost �economical or techno-
logical� of establishing long-range connections. On the other
hand, inhomogeneous distribution of vertices in large-scale
networks seems certainly to be a relevant generating element
of their hierarchical character. In any case, the agreement of
our results with the properties found in real networks suggest
that the mechanisms proposed may play a key role in the
evolution and structure of networks.
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